Cubic Action in Double Field Theory

Chen-Te Ma

APCTP

Franco Pezzella (INFN Naples)
Nucl.Phys.B 971 (2021) 115528; JHEP 08 (2020) 113
05 July, 2022

Manifest T-duality

Constraint

- doubled a compact torus

Constraint

- doubled a compact torus
- in order to eliminate the non-physical states, introduces the constraint $\alpha^{\prime} p_{j} \omega^{j}=N_{L}-N_{R} \equiv \alpha^{\prime} \lambda / 2$, where N_{L} is a number of left moving oscillators, N_{R} is a number of right moving oscillators, p_{j} is a momentum number, and ω^{j} is a winding number

Constraint

- doubled a compact torus
- in order to eliminate the non-physical states, introduces the constraint $\alpha^{\prime} p_{j} \omega^{j}=N_{L}-N_{R} \equiv \alpha^{\prime} \lambda / 2$, where N_{L} is a number of left moving oscillators, N_{R} is a number of right moving oscillators, p_{j} is a momentum number, and ω^{j} is a winding number
- the constraint is $\partial_{M} \partial^{M} f=-\lambda f$, where $\partial_{M} \equiv\left(\begin{array}{ll}\tilde{\partial}^{m} & \partial_{m}\end{array}\right)^{T}$, the doubled indices by $M=1,2, \cdots, 2 d$, the doubled indices raised or lowered by the $\mathrm{O}(d, d)$ metric

$$
\eta=\left(\begin{array}{ll}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right)
$$

Quadratic Term

- integration by part shows the constraint $K_{A}+K_{B}=0$ for the quadratic term

$$
\begin{equation*}
\int[d x d \tilde{x}] A * B \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
K_{A} K_{B}=-K_{A}^{2}=-\lambda . \tag{3}
\end{equation*}
$$

- the products are commutative and given by that:

$$
\equiv \sum_{K_{A}, K_{B}} A_{K_{A}} B_{K_{B}} \exp \left(i\left(K_{A}+K_{B}\right) X\right) \delta_{K_{A} K_{A}, \lambda} \delta_{K_{B} K_{B}, \lambda} \delta_{K_{A} K_{B},-\lambda}
$$

Gauge Transformation

- the gauge transformations are:

$$
\begin{align*}
& \delta_{\xi} \mathcal{H}^{M N} \\
= & \xi^{P} * \partial_{P} \mathcal{H}^{M N}+\left(\partial^{M} \xi_{P}-\partial_{P} \xi^{M}\right) * \mathcal{H}^{P N} \\
& +\left(\partial^{N} \xi_{P}-\partial_{P} \xi^{N}\right) * \mathcal{H}^{M P} ; \\
& \delta_{\xi} \Phi \\
= & -\frac{1}{2} \partial_{M} \xi^{M}+\xi^{M} * \partial_{M} \Phi, \tag{4}
\end{align*}
$$

where the generalized metric and the scalar dilaton:

$$
\begin{align*}
\mathcal{H}_{M N} & \equiv\left(\begin{array}{cc}
g^{-1} & -g^{-1} * \mathrm{~b} \\
\mathrm{~b} * g^{-1} & g-\mathrm{b} * g^{-1} * \mathrm{~b}
\end{array}\right) \\
\Phi & =e^{-2 \phi} * \sqrt{|\operatorname{det} g|} \tag{5}
\end{align*}
$$

- the λ does not appear in the gauge transformation explicitly

Field Content

- For $N_{L}+N_{R}=2$, we have three choices
$\left(N_{L}, N_{R}\right)=(1,1) ;(2,0) ;(0,2)$.
- The first choice is a massless state with a symmetric traceless tensor field $h_{j k}$, a scalar field ϕ, and an anti-symmetric tensor field $b_{j k}$.
- Other choices are the massive states with a symmetric traceless tensor field $h_{j k}$, a scalar field ϕ, and a one-form gauge field A_{j}.
- We will make a field correspondence for the massive state as in the following $b_{j k}=-\left(\tilde{\partial}_{j} A_{k}-\tilde{\partial}_{k} A_{j}\right)+\left(\partial_{k} A_{j}-\partial_{j} A_{k}\right)$ with $\delta A_{j}=\epsilon_{j}=\tilde{\epsilon}_{j}$.

Cubic Action

- We introduce the following additional terms to obtain the gauge invariant theory for $\left(N_{L}, N_{R}\right)=(2,0) ;(0,2)$:
(1) Quadratic Term

$$
\begin{equation*}
\tilde{S}_{a d d}^{(2)}=\frac{1}{16 \pi G_{N}} \int[d x d \tilde{x}]\left(-\frac{\lambda}{4} b^{j k} b_{\mu \nu}-\frac{\lambda}{4} h^{j k} h_{j k}+4 \lambda \Phi^{2}\right) ; \tag{6}
\end{equation*}
$$

(2) Cubic Term

$$
\begin{align*}
& \begin{array}{r}
\tilde{S}_{a d d}^{(3)} \\
= \\
\\
\\
\\
\\
\\
-2 \pi A_{l} e^{l k} \\
\left.\hline \bar{D}_{k} \Phi+A^{m} \bar{D}_{k}\left(A_{m}\right) D_{l}\left(e^{l k}\right)+2 \lambda A_{l} A^{\prime} \Phi\right],
\end{array}, \frac{1}{4} \Phi e^{l k} e_{l k}-4 \Phi \Phi \Phi-\frac{1}{2} A^{m} e_{m k} D_{l} e^{l k}
\end{align*}
$$

where

$$
\begin{equation*}
D_{k} \equiv \partial_{k}-\tilde{\partial}_{k} ; \quad \bar{D}_{k} \equiv \partial_{k}+\tilde{\partial}_{k} \tag{8}
\end{equation*}
$$

$$
d=1
$$

- For one double direction, the constraints are $K_{A}^{2}=K_{B}^{2}=\lambda$, which give the momenta:

$$
\begin{equation*}
K_{A}=\binom{a}{\frac{\lambda}{2 a}} ; \quad K_{B}=\binom{b}{\frac{\lambda}{2 b}}, \tag{9}
\end{equation*}
$$

where a and b are real-valued.

- The constraint $K_{A} K_{B}=-\lambda / 2$ leads to the imaginary a or b.

$$
d=1
$$

- For one double direction, the constraints are $K_{A}^{2}=K_{B}^{2}=\lambda$, which give the momenta:

$$
\begin{equation*}
K_{A}=\binom{a}{\frac{\lambda}{2 a}} ; \quad K_{B}=\binom{b}{\frac{\lambda}{2 b}}, \tag{9}
\end{equation*}
$$

where a and b are real-valued.

- The constraint $K_{A} K_{B}=-\lambda / 2$ leads to the imaginary a or b.
- This result implies

Thank you!

